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Abstract. Layered Spiking Neural P systems (LSN P systems) are a special class
of Spiking Neural Networks (SNNs) used to solve classification problems. These
types of networks are inspired directly by the biological brains, and their main
advantage is low energy consumption when run on neuromorphic hardware. Since
this special type of hardware is not yet available on conventional computers, the
most convenient method for using an LSN P system to perform data classification
is through a cloud platform. This raises privacy concerns for the users since
they expose their data to the cloud provider. This paper presents a new privacy-
preserving inference protocol for LSN P systems. The protocol allows one party,
called the client, to use a pre-trained LSN P system hosted by another party,
called the server, without compromising the privacy of the input or the result. The
paper also discusses two brute-force attacks on the protocol and shows that the
probability that the server compromises the client’s confidentiality is negligible.

Keywords: Privacy-preserving · Spiking Neural P systems · Machine learning as
a service.

1 Introduction

Spiking Neural Networks (SNNs) are a new type of neural network inspired directly
by the biological brain [10]. Unlike current deep learning networks that are trained
through gradient descent, SNNs are more efficient in terms of energy consumption
when run on neuromorphic hardware [8, 13, 12, 32]. There are several mathematical
models of the spiking neuron, the most well-known being leaky integrate-and-fire,
Hodgkin–Huxley and Spiking Neural P systems [31, 18, 14]. Layered Spiking Neural P
systems (LSN P systems) are a subclass of SN P systems designed to solve classification
problems [33]. Although the accuracy of this type of system outperforms other SNN
approaches, the main advantage in terms of energy consumption is obtained only if they
are run on neuromorphic hardware. A feasible way to use such a platform is through a
cloud platform. Among the advantages of this strategy, the most important are reduced
costs, flexibility, and scalability [30]. Nevertheless, the major drawback is the privacy
compromise on behalf of the user [6]. Consider the following scenario: a pre-trained
LSN P system is deployed on a remote server to solve classification problems. A client
wants to classify some confidential data using the remote LSN P system. Since privacy
is important for the client, it cannot simply upload the data to the server.

We solve this problem by proposing a new privacy-preserving inference protocol
for LSN P systems. Our construction allows the client to use a pre-trained LSN P
system hosted on a remote server without compromising the privacy of the data it wants
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to classify. With the proposed construction, the server cannot learn any information
about the client’s data or the classification result with a non-negligible probability. The
security of the protocol is based on additive secret sharing, thus being efficient from a
computational point of view [4]. The paper is structured as follows: in Section 2, we
present related work on SNN, SN P systems and various privacy-preserving machine
learning algorithms; in Section 3, we give a brief overview of the LSN P system, in
Section 4 we show our approach on private inference for LSN P system and discuss the
complexity of two brute-force attacks, Section 5 is left for the conclusions and further
directions of research.

2 Related work

SNNs and SN P systems have many practical applications, which justifies the effort to
build methods by which they can be used safely and privately. In [9], the authors used
SNNs for EEG classification. In [28], SNN applications for image classifications are
discussed. A new approach of series forecasting using SN P systems is presented in [19]
while [34] shows how to construct a convolutional neural network using such systems.

Regarding privacy-preserving machine learning, most approaches are based on ho-
momorphic encryption (HE) [1]. The idea of these cryptographic schemes is to allow
data processing in encrypted format. In [20], the authors used HE for secure aggregation
in swarm learning. In [24] is presented a new privacy-preserving image classification
algorithm based on HE. In [11], the authors propose a general method of using an
pre-trained neural network to make predictions over encrypted data and [2] presented a
protocol that allows multiple parties to train a neural network hosted on a remote server
using their local data without revealing it to the server.

In addition to the works stated above, in [7], the authors proposed a guide on how
to use homomorphic encryption for bioinformatics applications, and [3] presents one of
the first extensive solutions for privacy-preserving machine learning. Also, in [27], the
authors did an extensive survey on privacy-preserving methods for machine learning as
a service, e.g., machine learning models deployed on a remote server.

There are also papers discussing the privacy aspects of SNNs. In [16], the authors
discuss the privacy-preserving weights transfer from a trained artificial neural network
to an SNN. In [29], the authors proposed a decentralized learning method for SNNs
using federated learning.

We note that classical HE methods are not suitable for constructing privacy-preserving
inference for LSN P systems for two reasons [5]. First of all, the HE schemes are de-
fined over a finite field. This is in contradiction to how the potential values of spiking
neurons are modeled over a dense set. Secondly, HE schemes do not preserve the op-
erations from the plaintext space in the ciphertext space. Consider, for example, the
Paillier cryptosystem [22]. Given a ciphertext and a constant, to compute a ciphertext
that encrypts the product between the initial plaintext and the constant, the ciphertext
must be raised to the power of the constant. Simply multiplying the ciphertext with the
constant will not result in a valid ciphertext, i.e., a ciphertext that encrypts the product
between the corresponding plaintext and the constant. The energy efficiency of spiking
neural networks relies on the neuromorphic hardware. Changing the configuration of
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such hardware from performing the operations over the clear data to operations over the
ciphertext space implied increased costs [25].

3 Layered Spiking Neural P Systems

LSN P systems were proposed in [33] as a new model for spiking neural networks
designed to solve classification problems. There are two types of neurons in the system:
proposition neurons and rule neurons. The system is composed of four layers:
1. The input layer has k proposition neurons denoted as σ1

pi, 1 ≤ i ≤ k, where k
represents the number of features of the input. The spiking rules of these neurons
are in the form r1i : E1/aαi → aα

i where αi is the potential value of neuron σ1
pi

and E1 = {αi ≥ 0}.
2. The hidden layer has n rule neurons denoted as σ2

rj , 1 ≤ j ≤ n, where n represents
the number of possible classes in which the input can be classified. The spiking
rules for these neurons are in the form r2j : E2/aθj → aθ

i where θj is the potential
value of the neuron σ2

rj and E2 = {θ ≥ 0}.
3. The comparison layer has one proposition neuron denoted as σ3

p1. This neuron
spikes according to the rule r31 : E3/ao → ao where o is the potential value of the
neuron and E3 = {o ≥ 0}.

4. The output layer has n rule neurons denoted as σ4
rj . The spiking rules for these

neurons are in the form r41 : E4
j /a

θj → a; dj where E4
j = {θj ≥ o} and dj

represents a time delay equal to j.

The input of the LSN P system is a vector of real numbers from the interval [0, 1]. The
potential value of each input neuron σ1

pi is initialized with the corresponding value from
the input vector. The output of the system, i.e., the classification results, is the index of the
neurons that fire in the output layer. Each layer from the system is fully connected with
the next layer through synapses. The weight of the synapse that connects the proposition
neuron σ1

pi with the rule neuron σ2
rj is denoted byw1

ij . It is initialized with a value chosen
uniformly at random from the interval [0, 1]. Apart from the synapses that connect the
input layer with the hidden layer, all the other weights are 1. The learning process of
an LSN P system involves updating the weights for each sample in the training dataset
according to the Widrow–Hoff rule:

W ←W + η
(
t− t̃

)
α (1)

where W is the weight matrix between the input and the hidden layer, t represents
the output of the system, t̃ denotes the true classification label, and α is the vector of
potential values of the input neurons. An overview of the LSN P system is depicted in
Figure 1.

4 Private inference

In this section, we first present our protocol that allows a client to classify data using a
pre-trained LSN P system hosted on a server without compromising the privacy of the
data. We then introduce a security analysis from the perspective of a brute-force attack.
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Fig. 1: LSN P system

4.1 The protocol

The protocol involves two parties, denoted as the client and the server. The server
exposes a pre-trained LSN P system thorugh a service. The client wants to use the
service to classify data without revealing it to the server. Formally, the main security
requirement of the protocol is that the probability of the server learning information
about the client’s data is negligible [15]. Let α be the client’s input. α represents a
vector of k potential values modeled as real numbers from the interval [0, 1]. We denote
the security parameter by r. The protocol goes like follows:



Private Inference on Layered Spiking Neural P Systems 5

The client side - Phase 1
1. The client use Algorithm 1 to split the input vector α into r shares such as

α←
r∑

i=1

α(i).

2. The client randomly generates r vectors of k real numbers from the set [0, 1]
denoted as α(r+1), . . . ,α(2r).

3. The client randomly generates a secret permutationπ over the set{1, 2, . . . , 2r}.
4. The client sends to server the ordered setS =

(
α(π(1)),α(π(2)), . . . ,α(π(2r))

)
.

The server side

1. For each input vector, α(i), 1 ≤ i ≤ 2r, the server runs the LSN P system and
records the potential values of the neurons σ4

r1, σ
4
r2, . . . , σ

4
rn into the vector

θ(i).
2. The server sends the client the ordered set

(
θ(1),θ(2). . . . ,θ(2r)

)
.

The client side - Phase 2

1. Using the secret permutation π the client computes θ ←
r∑

i=1

θ(π
−1(i)).

2. The client determines the classification result, i.e., the label, for the input vector
α as the index of the maximum element from the vector θ.

Algorithm 1 Shares generation
Input: α
Output: α(1),α(2), . . . ,α(r)

1: for i = 1 to r-1 do
2: α(i) $←− [0, 1]k ▷ Choose r − 1 random vectors from the set [0, 1]
3: end for
4: α(r) ← α−

r−1∑
i=1

α(i) ▷ Set the last vector such as the sum of the r shares is α

The protocol is depicted in Figure 2. The following theorem captures the correctness
of the protocol:

Theorem 1. The result of the classification returned by the protocol is the same as the
result of the classification returned by the LSN P system on the input α.

Proof. We analyze the running of an LSN P system at each step of its execution on the
input α.

1. On a input vectorα ∈ S, the potential value of the proposition neuron σ1
pi is initialed

with αi, 1 ≤ i ≤ k.
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2. The firing rule r1i : E1/aαi → aαi , E1 = {αi ≥ 0} is applied and the proposition
neuron σ1

pi sends its potential value to each rule neuron σ2
rj , 1 ≤ j ≤ n.

3. Given the set of weights between the input layer and the hidden layer, the potential

value of the rule neuron σ2
rj becomes θj =

k∑
i=1

w1
ijαi.

4. The firing rule rj2 : E2/aθj → aθj , E2 = {θj ≥ 0} is applied and the rule neuron
σ2
rj seds its potential value to the proposition neuron σ3

p1.
5. The firing rule r31 : E1/ao → ao, E3 = {o ≥ 0} where o = max (θ1,θ2, . . . ,θn)

is applied and the neuron sends its potential value to each rule neuron σ4
rj .

6. The firing rule r41 : E4
j /a

θj → a; j, E4
j = {θj ≥ o} is applied and the rule neuron

σ4
rj sends a spike at the moment j to the environment if its action potential θj is

greater or equal o, i.e., only the rule neuron with the maximal potential value will
fire.

7. The result of the classification is the time moment at which one of the output neurons
fires, i.e., the index of the rule neuron with the maximal potential value.

Similarly, when the LSN P system is run with the input α(t), the potential value of

the rule neuron σ4
rj will be θ(t)

j =
k∑

i=1

w1
ijα

(t)
i .

After the LSN P system is run over the all the inputs
(
α(1),α(2), . . . ,α(2r)

)
the

client will receive the order set of potential values
(
θ(1),θ(2), . . . ,θ(2r)

)
and compute

θ as:

θj =

r∑

t=1

θ
(t)
j =

r∑

t=1

k∑

i=1

w1
ijα

(t)
i =

k∑

i=1

w1
ij

r∑

t=1

α
(t)
i (2)

Since
r∑

t=1
α(t) = α, we get:

θj =

k∑

i=1

w1
ijαi (3)

The value θj obtained in (3) by the client represents the potential value of the rule
neuron σ4

rj when the LSN P system is run with the input α so the label computed by
the client as the index of the maximum value between θ1,θ2, . . . ,θn corresponds to the
time moment at which the LSN P system spikes with the input α. Therefore, the results
computed using the protocol correspond to the results obtained directly over the input.

⊓⊔

4.2 Security discussion

The main idea behind the security of the protocol is based on the fact that the server
does not know which of the vectors received from the client are shares of the inputs.
This is due to the random shuffling based on the secret permutation π in step 4 of the
first phase of the client side.

There are two ways to attack the protocol from a brute-force perspective. We denote
by Pattack the probability that the server determines the input of the client. The first
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Security parameter:
r

Client

Split the input vector α
into r additive shares

Generate another
r vectors as decoy

Randomly shuffle all 2r vectors

Reconstruct the vector θ

Compute the classification
result as the index of the
maximum element from θ

Server

Run the LSN P system
over all the input vectors

(
α(π(1)),α(π(2)), . . . ,α(π(2r))

)

(
θ(1),θ(2). . . . ,θ(2r)

)

Fig. 2: Privacy-preserving inference protocol
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way is for the server to try to find out the permutation π, thus determining the positions
of the input shares. Since the permutation is considered over a set of 2r elements, the
probability that the server finds the one generated by the client is:

Pattack =
1

(2r!)
(4)

The second way is for the server to try every possible combination of r elements from
the ordered set received from the client. The number of such combinations is given by(
2r
r

)
; thus, the probability that the server finds the combination that sums the input is:

Pattack =
1(
2r
r

) (5)

In both cases, the probability that the server finds the input of the client has a negligible
upper bound for r ≥ 1:

Pattack ≤
1

2r
(6)

5 Conclusions and further directions of research

In this paper, we introduced a new privacy-preserving inference protocol for LSN P
systems [33]. The protocol allows a client to classify data using a pre-trained LSN P
system hosted on a remote server without compromising the confidentiality of the input
or the result. The idea of the protocol is to split the input into r additive shares, which are
then mixed with other r decoy shares chosen uniformly at random. All the 2r shares are
then sent to the server to be classified. Since the client is the only one who can distinguish
between a real share and a decoy one, he is also the only one who can reconstruct the
result. We also discussed two brute-force attacks and showed that the probability that
the server determines the input of the client decreases exponentially in r.

The first direction of research is to construct a formal proof of security for the
protocol following a cryptographic approach [17]. One approach is to consider a proof
by reduction to the problem of the subset sum [26, 21]

The second direction of research is to perform experiments to analyze the running
time of the protocol. This is an important consideration when deploying a privacy-
preserving protocol for machine learning tasks since most such systems have a large
number of users. Therefore, the aspect of scalability is essential. A first version of an
LSN P simulator for experiments is provided in [23] as a work in progress.
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